PARMONC - A Software Library for Massively
Parallel Stochastic Simulation*

Mikhail Marchenko

The Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Prospekt Lavrentieva 6, 630090, Novosibirsk, Russia,
Novosibirsk State University,
Ul. Pirogova 2, 630090, Novosibirsk, Russia
Tel.: (383)330-77-21, Fax: (383) 330-87-83

mam@osmf . sscc.ru

Abstract. In this paper, the software library PARMONC that was de-
veloped for the massively parallel simulation by Monte Carlo method
on supercomputers is presented. The “core” of the library is a well
tested, fast and reliable long-period parallel random numbers genera-
tor. Routines from the PARMONC can be called in the user-supplied
programs written in C, C++ or in FORTRAN without explicit usage of
MPT instructions. Routines from the PARMONC automatically calculate
sample means of interest and the corresponding computation errors. A
computational load is automatically distributed among processors in an
optimal way. The routines enable resuming the simulation that was pre-
viously performed and automatically take into account its results. The
PARMONUC is implemented on high-performance clusters of the Siberian
Supercomputer Center.

Keywords: Monte Carlo method, distributed stochastic simulation,
random number generator, parallel computation, supercomputers.

1 Introduction

It becomes a common point of view that probabilistic imitation models and
Monte Carlo method (stochastic simulation) will be widely used for computer-
aided simulation in the nearest future. There are a few reasons for such a predic-
tion. First of all, the use of probabilistic models is an adequate way to simulate
physical, chemical or biologic phenomena from “first principles”. On the other
hand, Monte Carlo methods, which realize probabilistic models, can be effec-
tively parallelized in the form of distributed computing. Therefore, a progress
in development and implementation of powerful supercomputers gives way to a
wide use of Monte Carlo method as a principal instrument for the computer-
aided simulation in many scientific areas (see, e.g., [1I, [2]).

The main objective of this paper is to introduce PARMONC - a library of
easy-to-use programs that was implemented on high-performance clusters of the

* This work was supported by the RFBR grants No 09-01-00639 and No 09-01-00035.

V. Malyshkin (Ed.): PaCT 2011, LNCS 6873, pp. 302316 2011.
© Springer-Verlag Berlin Heidelberg 2011

PARMONC - A Software Library 303

Siberian Supercomputer Center (http://www2.sscc.ru) and can also be used
in other supercomputer centers [3], [4].

The development of the PARMONC (an acronym for PARallel MONte Carlo)
is based on the library MONC that was implemented for a network of personal
computers [5]. The MONC was intensively used in the Department of Stochastic
Simulation in Physics of the Institute of Computational Mathematics and
Mathematical Geophysics of the SB RAS in Novosibirsk for a wide area of appli-
cations. Also, the MONC was actively applied in the Laboratory of Probability-
Theoretical Methods of the Omsk Branch of the Sobolev Institute of Mathematics
of the SB RAS to solve various problems in the population biology.

The main objectives of the library development are as follows:

— creation of a software tool suitable for the massively parallel stochastic sim-
ulation for a wide range of applications,

— creation of an easy-to-use software framework to parallelize stochastic sim-
ulation to be applied without knowledge of MPI language.

There are a number of publications and internet resources dedicated to the par-
allel random numbers generation (see, e.g., [6], [7], [§]). In comparison to other
parallel random number generators (RNGs), the one used for the PARMONC is
fairly fast, reliable and has an extremely long period. Also, this parallel RNG is
governed by a few parameters defined by the user. Using this generator, it ap-
pears possible to scale the stochastic simulation to sufficiently large (practically
infinite) number of processors (see Sections 24 and B1).

A number of publications are devoted to the development of software packages
for parallel computations with Monte Carlo method (see, e.g., [9], [10], [LI]).
Different hardware and software platforms are reported in these publications.
In our opinion, the following features distinguish the PARMONC from other
software tools and make it an easy-to-use instrument for specialists in the field
of stochastic simulation:

— The only thing the user has to do in order to parallelize stochastic simulation
is to write in C, C++ or in FORTRAN a sequential subroutine to simulate
a single realization of a random object of interest and to pass its name to
the PARMONC routines (see Sections [23] and []).

— In his/her sequential code, he/she uses a PARMONC function, which imple-
ments a parallel RNG, in a usual and convenient way (see Sections 23] [2.4]
and B.3)).

— In the course of simulation, the PARMONC periodically calculates and saves
in files the subtotal results of simulation and the corresponding computation
errors (see Sections [Z2] and H]).

— The PARMONC provides an easy-to-use technique to resume stochastic sim-
ulation after its termination with automatic averaging of the results of the
previous simulation (see Sections and H]).

http://www2.sscc.ru

304 M. Marchenko

2 Background

2.1 Estimators of Interest in Stochastic Simulation

Initially, Monte Carlo method (or stochastic simulation) was developed to solve
problems of radiation transfer. In the last half of the 20-th century, the area
of its applications became much wider. Theory of stochastic representations for
solutions to equations of mathematical physics was developed. Using the the-
ory, the corresponding numerical stochastic estimators were drawn up. Efficient
algorithms of Monte Carlo method were developed in statistical physics (the
Metropolis method, the Ising model, e.g.), in the physical and chemical kinetics
(modeling multi-particle problems, solving the Boltzmann and Smoluchowski’s
equations, modeling the chemical reactions and phase transitions, etc.), the queu-
ing theory, financial mathematics, turbulence theory, mathematical biology, etc.
The stochastic simulation is thought to be numerical realization of stochastic
representation of a certain object in order to estimate its desired integral features
with the use of a law of large numbers [12], [I3]. We assume that a functional of
interest ¢ € R is represented as expectation of some random variable (:

¢ ~ EC,

provided that its variance Var(is finite. In this case, one can evaluate the value
of E(using a sample mean:

L
ECr~¢=L""Y> G (1)
i=1
where (; are independent realizations of a random variable ¢. The value of C is
called a stochastic estimator for .
One also needs to evaluate the second moment E¢? of the random variable

L
EC~E=17") ¢
i=1

in order to estimate variance of a random variable ¢ and its standard deviation
Var¢ =~ 52 = £ — ¢, (Var¢)?® ~ 5.

In Monte Carlo methods [12], [I3], a complex random variable is represented
as a function
¢=(lar,ag,...,ax), (2)
where a1, as,...,ar are independent random variables called base random
numbers which have uniform distribution on the interval (0,1). A sequence
of the random numbers {ay} is generated with the help of some deterministic
numerical algorithm called a random number generator (RNG). Usually,
iterative formulas are used [12], [13]:

Op+1 :f(ak)vk:071727"'

where oy is a fixed quantity.

PARMONC - A Software Library 305

Thus, calculating the realizations (;,7 = 1,2,..., L we in turn take base ran-
dom numbers from the RNG. So, to calculate the sample mean we need a finite
set of independent random numbers R = {«a1, ag, . .., as}; We call a stochastic

experiment the process of calculating the sample mean (using a particular set
of base random numbers R. Usually, R is a subsequence of the general sequence
{a} of base random numbers. Using a different set R’ = {a}, 04, ..., a% } (or
a different subsequence) of the base random numbers that are independent of
the base random numbers from R, we finally obtain an independent value of the
sample mean. In other words, we carry out the stochastic experiment which is
independent of the first one.

A confidence interval of the confidence level X for the expectation E(is defined
by the formula

A =P(|¢ = B¢l < v(\)(Var()™L™%%) P(I¢ — BC| < y(M)FL™™). (3)

According to Tables of a standard normal distribution, y(\) = 3 for A = 0.997.
A value of an absolute (stochastic) error £ of the stochastic estimator is
given by the formula

£ =3(Var¢)*° L% ~ 36175
and the value of a relative (stochastic) error is given by the formula
p=2/C-100%.

Let us extend the conception of realization of a random object. Assume that at
the same time the simulation gives different independent values. It is convenient
to represent them as a matrix [(;;],1 < < nq,1 < j < ny. We will also call it
a realization (a realization of a random object). After averaging, the following
matrices are automatically calculated in the PARMONC:

— [¢ij] — a matrix of the sample means,
[€ij] — a corresponding matrix of the absolute errors,
— [pij] — a corresponding matrix of the relative errors,
o 2]] — a corresponding matrix of the sample variances.

Also, the following values are automatically calculated: &,,q, = max; ;&;; is
the upper bound for the entries of the matrix of the absolute errors; pma. =
max; ;j p;; is the upper bound for the entries of the matrix of the relative errors;
Oiar = MaX; ; 0 -2- is the upper bound for the entries of the matrix of the sample
variances.

In many applications, the above-mentioned matrices and values give an ex-
haustive information about the stochastic simulation.

2.2 Parallelization of Stochastic Simulation

A problem arises when a computational cost of the estimator (or computa-
tional expenses for obtaining a desired level of the absolute/relative error) is too
large. On the average, the computational cost is proportional to the value

C(¢) = 1¢Varg,

306 M. Marchenko

where 7 is a mean computer time to simulate a single realization of ¢. Also, it is
clear from formula (B]) that the sample volume L needed for obtaining a desired
level of accuracy is proportional to the variance Var(.

To decrease the computational cost, the simulation of statistically independent
realizations may be distributed among M processors (numbered from 0 to M —1).
At some moment all the processors send subtotal sample means to a dedicated
processor (e.g., to 0-th), and the parallel modification of the estimator is given

by the formula
-1 —

M
Cr = (D)™t 1™, (4)

=0 m=0

[u

where ,,, is a sample volume corresponding to the m-th processor, (™ is a
corresponding sample mean.

For the massively parallel stochastic simulation, the necessary quantity of
base random numbers is very large, and the choice of a parallel RNG must
be made with care. For example, a period of a well known RNG with special
parameters r = 40 and A = 57 is equal to 23% ~ 2.75-10! (see formulas (6] and
@) [12], [13]. Such a period is not sufficient for the up-to-date computations:
the simulation of a single realization may demand a quantity of base random
numbers comparable with the whole period of this generator [5].

Therefore, requirements for a parallel RNG are very rigorous. An important
requirement is that sequences of base random numbers {ay,} generated on differ-
ent processors must be independent of each other. Also, base random numbers
produced on different processors must have good statistical properties. A nec-
essary information about this subject may be found in [5]. In case of a “good”

generator, with increasing the number of processors M and the total sample
M—-1

volume Z Im, the value of parallel modification (@) goes to EC. Naturally, the

m=0
simulation of realizations must be effectively performed on processors without

any problems as those related to memory limitations, etc.

According to this parallelization technique, the stochastic simulation of real-
izations on different processors is performed in asynchronous mode. It is clear
that it is possible to neglect the time expenses for quite rare data exchanges
between the 0-th processor and the other ones. In this case, the variance Var(
remains the same but the value of 7¢ is decreased. As a result, the value of 7,
(and, respectively, the value of C(()) is decreased by M times thus giving the
optimal parallelization [5].

It is possible to exchange data at the end of simulation when all the processors
have simulated the dedicated number of realizations. However, it is not advis-
able for several reasons. First of all, it is desirable to control the absolute and
relative stochastic errors during the simulation. On the other hand, it is useful
to create periodic “save-points” of the simulation. For this reason, we modify
the parallelization technique in the following way.

Let the m-th processor (m =0,1,..., M — 1) periodically sends entries of the

matrices [C (Jm

i)] and [f_fjm)] and the corresponding sample volume [, (calculated

PARMONC - A Software Library 307

by the moment of sending data) to the 0-th processor. In turn, the 0-th pro-
cessor periodically receives all the sums {@(Jm)}, {éff)} and the sample volumes
{lm}, m=0,1,..., M —1, that were sent to it. Then the 0-th processor averages
the sample moments:

B M-1 B M-1
i =17 1Y, & =170 I, (5)
m=0 m=0
M—1
where [= Z lm, calculates the sample variances c‘rfj, the absolute &;; and
m=0

the relative p;; errors of the estimators fij. Then the 0-th processor saves the
matrices [(;;], [£5], [pi;] and [57;] in files. Note that the sample volumes I, m =
0,1,...,M — 1 may be different at the moment of passing data. A reason for
this fact may consist in different performances of processors or in the diversity
of time expenses for the computation of different realizations.

If the frequency of the data exchange with the O-th processor is not very
high, we can neglect the time expenses for the periodical data exchange and
averaging. Therefore, the modified parallelization technique enables us to reduce
the computational cost of the stochastic simulation nearly by M times. There is
also no need to use any load balancing techniques because all the processors work
independently and make data exchange in asynchronous mode. This conclusion
is proved by an example presented in Subsection [l

2.3 Implementation of Stochastic Simulation

For simplicity let us consider a problem of evaluation of the expectation E(of a
scalar random variable ¢ using the sample mean (). A typical sequential code
(written in C) consists of the following operations:

int i, L;

double s, t=0.0;

for(i=0;i<L;i++){
realization(s);
t=t+s;

}

t=t/(double)L;

Here the argument L is the number of independent realizations; realization
is the name of a sequential routine, which computes a single realization of the
random variable ¢ and returns its value to the argument s. Finally, the variable
t gives the value of the sample mean. In the routine realization the user calls
a function which implements a RNG. The usual use of this function (named
rng(), e.g.) is as follows:

a = rng();

308 M. Marchenko

Here a is the base random number which has the uniform distribution on the
interval (0, 1). These numbers are used to simulate necessary complex distribu-
tions by formula (). Given statistically independent outputs from the function
rng(), all the return values s from the subroutine realization are statistically
independent.

Thereby, a routine, which computes a single realization of a random object,
takes the return values from a function that implements a RNG and returns a
single realization of a random object. This routine and the specifications for the
random object realization are provided by the user. The routine that implements
a RNG is considered to be an external routine. In Fig[l] we explain the relation-
ship between main program and data elements in the stochastic simulation.

ernal . " User-supplied routine
routine { ! and specifications A matrix
{ Base | ! i
i random ! | €l i
1
i numbers |} __.eg. !
e — . T/ -
1 A routine to iy A single
Random [. ; I SR
- simulate a single — " 5 / realization of
A Tr - 3 realization of a random
enerator : 2
9 a random object object

Fig.1. A diagram showing the relationship between the main program and data ele-
ments in stochastic simulation

To implement the above-mentioned parallelization technique, the most con-
venient way is to use a user-defined routine that computes a single realization
of a random object as the major piece of the code to be launched on different
processors (see Fig. []). Like in a sequential code, each copy of the routine takes
return values from a function that implements the parallel RNG and returns a
single realization of a random object. The outputs from all the copies of the user-
defined routine (realizations) are taken into account in the course of averaging
with the use of formulas (B)). This approach is very convenient for specialists in
the stochastic simulation because it takes them minimal efforts to adapt their
sequential programs for using the PARMONC.

2.4 A Parallel RNG

The following base linear congruential generator [12], [13] is used to produce a
general sequence of base random numbers {ay}:

up =1, ugy1 = upA (mod 27), ap = up2™ ", k=0,1,2,.... (6)
A period of the congruential generator is

Lp=2""2 (7)

PARMONC - A Software Library 309

We use the following parameters for the generator [14]:
r =128, A=5"01 (mod 2'2%).

Therefore, the period of this generator is 2'26 ~ 103%. But it is recommended to
use the first half of the period only, particularly, the first 212° random numbers
[12], [13].

In order to obtain independent streams of the base random numbers the gen-
eral sequence {ay} is divided into subsequences of length n that start with the
initial numbers &,;, = apm, m = 0,1,.... To be exact, the "leaps” of length n
are made. Initial numbers of the subsequences {a,,} are calculated by the
formula

o =1, Gims1 = UmAn) (mod 27), Gm =tm 2", m=0,1,2,... (8)

The multiplier A(n) in this auxiliary generator of the “leaps” of length n is
calculated as follows:
A(n) = A" (mod 27).

This parallel generator enables the convergence of the parallel modification (@)
to EC. It is implemented as a well tested, fast and reliable routine in the De-
partment of Stochastic Simulation in Physics of the Institute of Computational
Mathematics and Mathematical Geophysics in Novosibirsk [15], [16]. It was ver-
ified on parallel processors using rigorous statistical testing and solving various
problems with known solutions. Therefore, using the parallel generator, we may
be sure in the correct stochastic simulation on parallel processors.

The PARMONC parallelization technique is to define a hierarchy of embed-
ded subsequences of the general sequence {ax}. The PARMONC assigns sub-
sequences of base random numbers to: a) different stochastic experiments, b)
different processors and c¢) different realizations. The technique is as follows:

— within the general sequence {ay}, the “leaps” of length n. are made using
@) in order to define the initial numbers of subsequences that will be used
to perform stochastic experiments (when doing it, ”experiments” subse-
quences are produced),

— within each “experiment” subsequence, the “leaps” of length n, < n. are
made using (&) to define the initial numbers of embedded subsequences that
will be used on different processors (when doing it, ”processors” subse-
quences are produced),

— within each “processor” subsequence, the “leaps” of length n, < n, are made
using () to define the initial numbers of embedded subsequences that will
be used to simulate independent realizations (when doing it ”realizations”
subsequences are produced).

So, the hierarchy of the embedded subsequences is as follows:
general sequence D ”experiments” subsequences

”experiments” subsequence D ”processors” subsequences

"processors” subsequence D "realizations” subsequences

310 M. Marchenko

The initialization of a parallel RNG is as follows: the ”experiment” subse-
quence number is defined by the user with the corresponding argument of the
subroutine parmoncf/parmoncc; the "processor” subsequence number is au-
tomatically defined by the PARMONC with a parallel branch number provided
by MPI; the “realizations” subsequence number is automatically defined by the
PARMONC before starting the simulation of a realization.

The default lengths of ”leaps” are as follows:

— e = 2% ~ 1034 - for ”experiments” subsequences,
— ny, = 2% &~ 10%° - for "processors” subsequences,
— n, = 2% ~ 10'3 - for "realizations” subsequences.

One can therefore perform approximately 212° - 27115 = 210 x~ 103 stochastic
experiments; within a single experiment one can use 29 . 2798 — 217 ~ 10°
processors at most and on a processor one can simulate 298 . 2743 = 255 ~ 1016
independent realizations at most.

In the PARMONC the corresponding generator multipliers A(n.), A(n,) and
A(n,) are defined to use by default. Nevertheless, one can redefine the default
values of A(n.), A(np) and A(n,) with the use of the command genparam (see
Subsection B.3).

3 Overview of the Library PARMONC

A description of the PARMONC can be found on the web site of the Siberian
Supercomputer Center [3]; the full description is provided in [4].

3.1 Contents of the Library
Contents of the PARMONC is as follows:

— rnd128 - a function to produce a single base random number,

— parmoncf - the main subroutine to perform parallel stochastic simulation
(for programs written in FORTRAN),

— parmoncc - the main subroutine to perform parallel stochastic simulation
(for programs written in C),

— manaver - a program to average subtotal sample moments calculated on
processors (in a manual mode),

— genparam - a program to calculate multipliers of the parallel RNG (in a
manual mode).

Here rnd128, parmoncf and parmoncc are library routines to use in FOR-
TRAN or C/C++ user-supplied programs, genparam and manaver are exe-
cutable files to run from a command line. Object files for the library routines
are archived to a static library libparmonc.a.

The PARMONC software realization does not use any unique features of a
specific FORTRAN compiler or a specific MPI implementation. Therefore, it
can be compiled and built with any FORTRAN compiler and MPT library and
ported to different high-performance clusters or powerful personal computers
with multi-core processors.

PARMONC - A Software Library 311

3.2 Subroutines ’parmoncf’ and ’parmoncc’

The subroutine parmoncf/parmoncc initializes the parallel RNG, distributes
the simulation of independent realizations among processors, makes all opera-
tions to pass, to collect and to average data and to save the simulation results in
files. The simulation results are stored in several files in a special subdirectory
of the user’s working directory (see Subsection [3.6)).

These subroutines take a name of a user-defined routine which computes a sin-
gle realization of a random object as argument. The main user-supplied program
where a call to parmoncf/parmoncc is located is considered as a MPI program
despite the fact that it does not contain any MPI instructions (see an example in
Section). This means that it must be compiled, linked and launched according
to specific rules determined by a particular MPI realization on the computer.

The argument res is a resumption flag. It defines whether the present simu-
lation resumes the previous one or not:

— res = 0 in case of a new simulation. In this case the parmonc creates brand
new files with results.

— res = 1 in case of resuming the previous simulation. In this case the par-
monc automatically takes into account results of the previous simulation
(from the corresponding files) and averages it by formulas (H).

The argument seqnum is the ”experiments” subsequence number (it is equal to
0,1,2, ...). In case of resuming the previous simulation, this argument must be
different from the same argument of the previous use of parmoncf/parmoncec.

Also, there are parameters perpass, peraver defining the periods of data
passing and averaging, respectively, as the number of minutes.

3.3 Function ’rnd128’

The double precision function rnd128 is written using 64-bit integer arithmetic.
The function has no arguments. After the initialization of the parallel RNG,
rnd128 starts returning base random numbers from a selected subsequence.
Thus, on different processors, parallel streams of base random numbers are gen-
erated independently.

3.4 Command ’manaver’

The program manaver is used to average and to save in files the subtotal sample
moments calculated on processors. It is launched after the termination of a job
on a cluster. The application of manaver is useful in the case when by the
moment of terminating the job, the sample moments stored in the files with
results correspond to a smaller sample volume than to the one that was actually
obtained on all the processors.

312 M. Marchenko

3.5 Command ’genparam’

If one wants to define different values of the parallel RNG multipliers A(n.), A(np)
and A(n,) in comparison with the default ones, he runs the program genparam
from a command line in his working directory in the following way:

$ genparam ne np nr

where ne, np and nr are exponents of 2. As a result, a file parmonc_genparam.
dat is created in the user’s working directory. Hereupon, the PARMONC rou-
tines use the multipliers’ values from this file instead of the default ones.

3.6 Description of Files with Results of Simulation

When the user launches a job on a cluster, a subdirectory /parmonc_data
is automatically created by the PARMONC in his/her working directory. In
the directory /parmonc_data/results one can find the results of computation
stored in the files func.dat, func_ci.dat and func_log.dat:

— func.dat stores a matrix of the sample means,

— func_ci.dat encapsulates a matrix of the sample means together with ma-
trices of absolute and relative errors and variances,

— func_log.dat stores information about the stochastic simulation: the total
sample volume, the mean computer time per a realization, the upper bounds
for absolute and relative errors, etc.

Also, in this directory, one can find a file parmonc_exp.dat containing infor-
mation about each stochastic experiment that was started by the user.

4 Performance Test

The following example may be found in the full documentation to the PAR-
MONC [4]. Also, it is available for the users of the the Siberian Supercomputer
Center in the directory of the library [3].

We consider a 2-dimensional system of stochastic differential equations (SDEs)
over a time interval [0, 100]:

dg(t) = Cdt + Ddw(t),

§(0) = (8) () = (328) 0= (1:8) D= (1002 1002)’

and w(t) = wi(?) is a 2-dimensional Wiener process. Our objective is to eval-
wa(t)

where

uate expectations of its components Eyi(t), Eyo(t) at fixed points

PARMONC - A Software Library 313

t;=14-1071, i =1,...,1000. We simulate trajectories of the SDE system using
a generalized Euler method with a mesh size h = 1076:

gt = 5 4 hC + VADE™ n=0,1,2,...,108, (9)

(n) (n)
() _ <0> o) _ <y1) Fn) _ (61)
v = A O RIS I B
0 ys" 5
all quantity{fi(n)} being independent in total and having a standard normal
distribution. The simulation yields a matrix [¢;;]:

where

Gy =y ,n=110%1<i <1000,1 < j < 2.
Thus, each entry of the matrix after averaging gives:
Gj ~By;(t:),t; =i-1071, i=1,...,1000,5 = 1,2.

Below, as an example, the main user’s program in C containing a call to
parmoncc is provided.

int main()

{
int nrow = 1000, ncol = 2, res = 1, seqnum = 2, perpass = 10,
peraver = 20;
long long int maxsv = pow(10,9);
parmoncc (difftraj, &nrow, &ncol, &maxsv, &res, &seqnum,
&perpass, &peraver);
return O;
}

Here difftraj is the name of the user-supplied subroutine implementing the sim-
ulation of a realization of an approximate diffusion trajectory according to ()
and returning a realization of matrix [(;;]; nrow and ncol define dimensions of
the matrix; maxsv is a maximal sample volume to simulate on processors; res
is a resumption flag; seqnum defines the “experiments” subsequence number;
perpass and peraver define the period of sending and receiving data, respec-
tively (in minutes).

In this example res = 1. This means the case of resuming the previous simu-
lation: the PARMONC automatically takes into account results of the previous
simulation (from the corresponding files) and averages it by formulas (@). Also,
seqnum = 2. This means that we use the ”experiments” subsequence with
number 2. Processors send subtotal data to the 0-th processor every 10 min-
utes. In turn, the 0-th processor receives data every 20 minutes. The argument
maxsv is chosen to be sufficiently large in order to have an “endless” stochastic
simulation that is limited only by the time framework of a job on a cluster (it is
defined by the user when starting the job).

314 M. Marchenko

8000 | M=1 —=—
M=8 @
7000

8000

7000

6000 | 6000 |

g 5000 ~ 5000
3 I 2

: 4000 & 4000 f
J E}
| 1 d

3000 3000 |

2000 | 2000 |

1000 e | 1000 -

L — . . &=

200 400 600 800 1000 1500 3000 4500 6000 7500
L
L
a) b)

5000

7000

4500
6000

4000

5000 3500 |

4000 | 3000 ¢

2500 |

Teomp (sec.)
Teomp (56€)

3000 |- 2000 |

2000 1500

1000 |
1000

- —

T e 500 b

5000 10000 15000 20000 25000 15000 30000 45000 60000 75000
L L

c) d)

Fig. 2. Results of a PARMONC performance test: comparison of the computer time
Teomp = Teomp (L) for different numbers of processors: a) M = 1 and 8, b) M = 8, 16 and
32,¢c) M =32, 64 and 128, d) M = 128, 256 and 512. In each graph X-axis corresponds
to the total sample volume L, Y-axis corresponds to Tcomp measured in seconds.

In the subroutine difftraj, the parallel RNG is called in the following simple
way':

a = rnd128(Q);

This way of calling the RNG seems the most natural for specialists in the stochas-
tic simulation.

The above-mentioned diffusion problem was computed on 1, 8, 16, 32, 64, 128,
256 and 512 processors to compare the speedup of parallelization. All the pro-
cessors sent data to the 0-th processor after having simulated each realization.
In turn, the 0-th processor received data after having simulated each realiza-
tion. Such conditions are assumed to be strictest in terms of the parallel algo-
rithm performance. A mean computer time 7¢ to simulate a single realization is

PARMONC - A Software Library 315

approximately 7.7 sec., the bulk of data which is periodically sent by every pro-
cessor to the 0-th processor is approximately 120 Kbytes.

For different numbers of processors M we compare the computer time it takes
to simulate L realizations in total Teomp = Teomp(L) . A value of Teomp is evalu-
ated after the O-th processor has received, averaged and saved data in files.

It is seen from the graphs in Fig. [2] that for all the values of L the speedup of
parallelization is in direct proportion to the number of processors despite “strict”
conditions related to data exchange.

5 Conclusion

In conclusion, we define some directions for the future. First of all, it is desirable
to adapt the PARMONC to modern powerful GPU computer clusters and, also,
to hybrid computer clusters. Then, it seems promising to use the PARMONC as
a basic software level for the future computer-aided simulation based on adequate
probabilistic models to imitate real world phenomena from the “first principles”.

Acknowledgements. The author would like to thank Prof. Victor Malyshkin
for our helpful discussions on the subject of this paper; Nikolai Kuchin, Sergey
Kireev and Maxim Gorodnichev for their valuable advice; Dr. Galiya Lotova for
her patience and help in improving the reliability of the library. Also, the au-
thor would like to thank Prof. Boris Glinskiy, Head of the Laboratory “Siberian
Supercomputer Center”, for his kind attention to the present research.

References

1. Martin, W.R.: Advances in Monte Carlo Methods for Global Reactor Analysis. In:
Invited lecture at the M&C 2007 International Conference, Monterey, CA, USA,
April 15-19 (2007)

2. Brown, F.B., Martin, W.R., Mosteller, R.D.: Monte Carlo - Advances and
Challenges. In: Workshop at PHYSOR-2008, Interlaken, Switzerland, Septem-
ber 14-19, Report LA-UR-08-05891, Los Alamos National Laboratory (2008),
http://www.physor2008. ch/documents/Workshop_I/PHYSORO8-WorkShopI.pdf

3. Page of PARMONC on the web site of Siberian Supercomputer Center,
http://www2.sscc.ru/SORAN-INTEL/paper/2011/parmonc.htm

4. Link to a full documentation to PARMONC,
http://www2.sscc.ru/SORAN-INTEL/paper/2011/parmonc.pdf

5. Marchenko, M.A., Mikhailov, G.A.: Distributed computing by the Monte Carlo
method. Automation and Remote Control 68(5), 888-900 (2007)

6. Brent, R.: Fast and reliable random number generators for scientific computing.
In: Dongarra, J., Madsen, K., Wasniewski, J. (eds.) PARA 2004. LNCS, vol. 3732,
pp. 1-10. Springer, Heidelberg (2006)

7. The Scalable Parallel Random Number Generators Library (SPRNG),
http://sprng.fsu.edu/

8. Coddington, P.D., Newell, A.J.: JAPARA — A Java Parallel Random Number Gen-
erator Library for High-Performance Computing. In: 18th International Parallel
and Distributed Processing Symposium (IPDPS 2004) - Workshop 5, vol. 6, p.
156a (2004)

http://www.physor2008.ch/documents/Workshop_I/PHYSOR08-WorkShopI.pdf
http://www2.sscc.ru/SORAN-INTEL/paper/2011/parmonc.htm
http://www2.sscc.ru/SORAN-INTEL/paper/2011/parmonc.pdf
http://sprng.fsu.edu/

316

9.

10.

11.

12.

13.

14.

15.

16.

M. Marchenko

Mendes, B., Pereira, A.: Parallel Monte Carlo Driver (PMCD) - a software pack-
age for Monte Carlo simulations in parallel. Comput. Phys. Comm. 151(1), 89-95
(2003)

Badal, A., Sempau, J.: A package of Linux scripts for the parallelization of Monte
Carlo simulations. Comput. Phys. Comm. 175(6), 440450 (2006)

Slawinska, M., Jadach, S.: MCdevelop - a universal framework for Stochastic Sim-
ulations. Comput. Phys. Comm. 182(3), 748-762 (2011)

Mikhailov, G.A., Voytishek, A.V.: Numerical stochastic simulation. Publishing
Center ” Akademia” (2006) (in Russian)

Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, 2nd edn.
John Wiley & Sons, New York (2007)

Dyadkin, I.G., Hamilton, K.G.: A study of 128-bit multipliers for congruential pseu-
dorandom number generators. Comput. Phys. Comm. 125(1-3), 239-258 (2000)
Marchenko, M.A.: Parallel pseudorandom number generator for large-scale monte
carlo simulations. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp.
276-282. Springer, Heidelberg (2007)

Page of 128-bit parallel congruential random number generator, Department of
Stochastic Simulation in Physics of the Institute of Computational Mathematics
and Mathematical Geophysics in Novosibirsk, Russia,
http://osmf.sscc.ru/~mam/generator_en.htm

http://osmf.sscc.ru/~mam/generator_en.htm

	PARMONC - A Software Library for Massively Parallel Stochastic Simulation
	Introduction
	Background
	Estimators of Interest in Stochastic Simulation
	Parallelization of Stochastic Simulation
	Implementation of Stochastic Simulation
	 A Parallel RNG

	Overview of the Library PARMONC
	Contents of the Library
	 Subroutines 'parmoncf' and 'parmoncc'
	Function 'rnd128'
	Command 'manaver'
	 Command 'genparam'
	 Description of Files with Results of Simulation

	Performance Test
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

