List of publications

Dr. Elena V. Shkarupa

 

 Articles

1.      Shkarupa E.V., Voytishek A.V. Optimization of discretely stochastic procedures for globally estimating the solution of an integral equation of the second kind. Russian Journal of Numerical Analysis and Mathematical Modeling. 1997. V. 12, N 6, p. 525-546.

2.      E. V. Shkarupa Error Estimation and Optimization for the Frequency Polygon Method in the frame0-Metric. Computational Mathematics and Mathematical Physics. 1998. V. 38, N 4, p. 590-603. Translated from Zhurnal Vychislitelínoi Matematiki i Matematicheskoi Fiziki. 1998. V. 38, N 4, p. 612-626. 

3.      Plotnikov M.Yu., Shkarupa E.V. Error estimation and optimization in — - space  of Monte Carlo iterative solution of nonlinear integral equations. Monte Carlo Methods and Application. 1998.  V. 4, N 1, p. 53-70. 

4.      Shkarupa E.V., Voytishek A.V.  Convergence of discrete-stochastic numerical procedures with independent or weakly dependent estimators at grid nodes. Journal of statistical planning and inference. 2000. N 85, p. 199-211. 

5.      Voytishek A.V., Golovko N.G., Shkarupa E.V. Error estimation for multi-dimensional analogue of the polygon of frequencies method. Sibirskiy zhurnal vychislitelnoy matematiki.  2002. V. 5, N 1, p.  11-24. (in Russian) 

6.      Shkarupa E.V. The use of quantum computer for global estimation of an integral depending on a parameter. Sibirskiy zhurnal vychislitelnoy matematiki. 2002. V. 5, N 4, p. 381-394. (in Russian) 

7.      E. V. Shkarupa Optimization of the Frequency Polygon Method with Track-Length Estimators for the Global Solution of a Transport Equation. Computational Mathematics and Mathematical Physics. 2003. V. 43, N 3, p. 420-432. Translated from Zhurnal Vychislitelínoi Matematiki i Matematicheskoi Fiziki. 2003. V. 43, N 3, p. 440-452. 

8.      Sabelfeld K., Shkarupa E. Functional Random Walk on Spheres algorithm for biharmonic equation: optimization and error estimation. Monte Carlo Methods and Application. 2003, V. 9, N. 1, p. 51-65.  

9.      Shkarupa E.V. Convergence and optimization of the frequencies polygon method with the absorption estimators for global solution of the integral equation of the second kind. Bulletin of young scientists. 2003. N 2. Series: Applied mathematics and mechanics, p. 109-117. (in Russian) 

10.  E. V. Shkarupa Error Estimation and Optimization of the Functional Algorithms of a Random Walk on a Grid Which Are Applied to Solving the Dirichlet Problem for the Helmholtz Equation. Siberian Mathematical Journal. 2003. V. 44, N 5, p. 908-925.  Translated from Sibirskii Matematicheskii Zhurnal. 2003. V. 44, N 5, p. 1163-1182. 

11.  Shkarupa E.V. Functional algorithm of a Random Walk on a Grid for biharmonic equation. Error estimation and optimization. Sibirskiy zhurnal vychislitelnoy matematiki. 2005. V. 8, N 2, p. 163-176. (in Russian) 

12.  Plotnikov M.Yu., Shkarupa E.V. The discrete-stochastic approaches to solving the    linearized Boltzmann equation. Monte Carlo Methods and Applications. 2005. V. 11, N 4, p. 447-462. 

13.  Roman N. Makarov and  Elena V. Shkarupa. Stochastic algorithms with Hermit cubic spline interpolation for global estimation of solutions of boundary value problems. SIAM Journal of Scientific Computing. 2008. Vol. 30, No. 1, pp. 169Ė188. 

14.  M.Yu. Plotnikov, E.V. Shkarupa. Construction of an upper error bound and optimization of the test particle method. Russian J. Numer. Anal. Math. Modelling. 2008. Vol. 23, No. 3, pp. 251Ė264. 

15.  M. Yu. Plotnikov and E. V. Shkarupa, Estimation of the Statistical Error of the Direct Simulation Monte Carlo Method.// Comput. Math. Math. Phys. 2010. Vol. 50, No. 2, pp. 335-344.) 

16.  M.Yu. Plotnikov, E.V. Shkarupa. Some approaches to error analysis and optimization of the DSMC method. Russian J. Numer. Anal. Math. Modelling. 2010. Vol. 25, No. 2, pp. 147-167. 

 

Contributions to academic conferences 

1.      Shkarupa E.V. and Voytishek A.V.  —-approach to optimization of the vector discrete-stochastic numerical procedures. Proceedings of the Second International Workshop on Mathematical Methods in Stochastic Simulation and Experimental Design, St. Petersburg, 1996. p. 45-49. 

2.      Shkarupa E.V. Error estimation and optimization in space C metric of the Monte Carlo method for iterative solution of the nonlinear integral equation. Proceedings of Young Scientists Conference Institute of Computational Mathematics and Mathematical Geophysics SB RAS. Novosibirsk. 1997. p. 197-211. (in Russian) 

3.      Shkarupa E.V. The conditional optimization in C - space of the frequencies polygon method for iterative solution of the nonlinear integral equation. Proceedings of the 4th St. Petersburg Workshop on Simulation, St. Petersburg, 2001. p. 441-446. 

4.      Shkarupa E.V. The conditional optimization of the frequencies polygon method with the absorption estimators. Proceedings of Young Scientists Conference Institute of Computational Mathematics and Mathematical Geophysics SB RAS. Novosibirsk. 2001. p. 281-288. (in Russian) 

5.      Shkarupa E.V. Conditional optimization of the frequencies polygon method with a free-path estimator for global solution of the radiative transfer equation. Proceedings of the International Conference on Computational Mathematics, Novosibirsk, 2002. p. 281-287. 

6.      Shkarupa E.V. Error estimation and optimization of the functional Monte Carlo algorithms for solving of the Dirichlet problem for the Helmholtz equation. Proceedings of Young Scientists Conference Institute of Computational Mathematics and Mathematical Geophysics SB RAS. Novosibirsk. 2002. p. 213-219. (in Russian) 

7.      Shkarupa E.V. Comparison of the different functional Monte Carlo algorithms for solving of the Dirichlet problem for the Helmholtz equation. Proceedings of Young Scientists Conference Institute of Computational Mathematics and Mathematical Geophysics SB RAS. Novosibirsk. 2003. p. 155-162. (in Russian) 

8.   Burmistrov A.V., Makarov R.N., Marchenko M.A., Shkarupa E.V. On solving diffusion problems by Monte Carlo methods. Proceedings of the 3rd SB RAS Young Scientists Conference devoted to M.A.Lavrent'ev. Part I. - Novosibirsk, 2003, pp. 8-13. (in Russian)  

9.      Roman Makarov, Elena Shkarupa. Functional algorithms of Monte Carlo method for solving nonlinear boundary value problems. Proceedings of the International onference on Computational Mathematics ICCM-2004. Part 1. Novosibirsk: Inst. of Comp. Math. and Math. Geoph. Publ., 2004. pp. 341-346 

10.  Burmistrov A.V., Makarov R.N., Marchenko M.A., Shkarupa E.V. On solving diffusion problems by Monte Carlo methods (part 2). Proceedings of the 4th SB RAS Young Scientists Conference devoted to M.A.Lavrent'ev. Part I. - Novosibirsk, 2004, pp. 7-10. (in Russian)  

11.  Plotnikov M.Yu., Shkarupa E.V. Application of the discrete-stochastic approaches to solving the linearized Boltsmann equation. Proceedings of the Fifth Workshop on Simulation, St.Petersburg, Russia, June 26 Ė July 2, 2005. P. 545-550. 

12.  Mikhail Plotnikov, Elena Shkarupa. Construction of the optimal parameters for the test particle Monte Carlo method. Rarefied Gas Dynamics: 25-th International Symposium, edited by M.S.Ivanov and A.K.Rebrov. Novosibirsk 2007. p. 484-489 

13.  Plotnikov M. Yu. and Shkarupa E.V. Application of the Theory of Functional Monte Carlo Algorithms to Optimization of the DSMC Method // Proc. 26-th Intern. Symp. on Rarefied Gas Dynamics, edited by T. Abe. AIP Conference Proceedings, Melville, New York, 2009. V. 1084. P. 377-382 

14.  Plotnikov M. Yu., Shkarupa E.V. Analysis of statistical error of the DSMC method // Proc. 6th St. Petersburg Workshop on Simulation, 2009. V. 1, pp. 137-142.

 

Other publications 

1.  Shkarupa E.V., Voytishek A.V. Comparison of two procedures of global stochastic estimation of functions. Bulletin Novosibirsk Computing Center.   Series:  Numerical Analysis. 1993. V. 4, p. 71-81. 

2.  Shkarupa E.V. Discretely stochastic procedures for global estimating the solution of an integral equation of the second kind. Frequencies polygon method. Novosibirsk, 1996.  34 pp.  (Preprint / Computer Center SB RAS; N 1091). 

3.      Shkarupa E.V. C-approach to the error estimation and optimization of the vector discrete- stochastic procedures for global estimating the solution of an integral equation of the second kind. Proceedings of Computer Center SB RAS. Series: Computational Mathematics. 1996. Issue 4. p. 146-167. 

4.     Voytishek A.V., Shkarupa E.V. Discretely stochastic procedures for global estimating the solution of an integral equation of the second kind. Optimization. Novosibirsk, 1997. 94 pp. (Preprint / Computer Center SB RAS; N 1091). 

5.     Shkarupa E.V. C-approach to optimization of solving nonlinear integral equation by the Monte Carlo Method. Abstract of the 21st International Symposium on Rarefied Gas Dynamics, Marseille, France, July 1998. 

6.      Shkarupa E.V. Convergence and optimization of the numerical discrete-stochastic procedures. Ph.D. thesis. Novosibirsk, 2000.  

7.      Sabelfeld K., Shkarupa E. Functional Random Walk on Spheres algorithm for biharmonic equation: optimization and error estimation. Berlin, 2003. (Preprint / WIAS;826, www.wias-berlin.de/publications/preprints/826.html) 

8.     Shkarupa E. Error estimation and optimization of the functional algorithm of random walk on grid for the solution of the Dirichlet problem for the Helmholtz equation. Abstracts of IVth IMACS Seminar on Monte Carlo Methods MCM-2003, Berlin, p. 23. 

9.     Sabelfeld K., Shkarupa E. Functional Random Walk on Spheres algorithm for the biharmonic equation: optimization and error estimation. Abstracts of IVth IMACS Seminar on Monte Carlo Methods MCM-2003, 15-19 September, Berlin, p. 20.  

10.  M.Yu. Plotnikov, E.V. Shkarupa. Construction of Optimal Parameters for the Test Particle Monte Carlo Method. Abstracts of 25th Intern. Symp. on Rarefied Gas Dynamics, St. Petersburg,  Russia, 21-28 July, 2006. P. 272. 

11.  Roman Makarov, Elena V. Shkarupa. Application of estimates of partial derivatives to constructing functional Monte Carlo methods. Abstracts of 7th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Ulm University, Germany, 14-18 August, 2006.